Unit XXVIII, page 129 Pile Fires

Fire Basics

Ignition temperature . . .

the temperature at which more heat is generated by combustion than is lost to the surroundings, so that the combustion process becomes self-sustaining (Energy Technology Handbook, Considine).

The ignition temperature for most organic materials is 205 to 400°F (96 to 205°C).

Oxygen

Heat Sources in a Composting Pile

1. Biological respiration

- a) releases heat during biological degradation that is
- b) driven by compostable material (nutrients), moisture, air and organisms.

2. Chemical oxidation

- a) begins at about 122°F/50°C,
- b) can be accelerated by heat released during active composting, and
- c) releases heat during chemical breakdown of organic matter.

How does the fire triangle close in a pile of combustible material . . . spontaneously?

Simulated Microbial Population Dynamics During Composting

A simulation based on:

Beffa, Blanc, Marilley, Fischer, Lyon and Aragno "Taxonomic and Metabolic Diversity during Composting" 1995; Jeong and Shin "Cellulosic Degradation in Bench-Scale Composting of Food Waste and Paper Mixture" 1997; Whitney and Lynch "The Importance of Lignocellulosic Composting" 1995.

Reproduced with permission of the US Composting Council

Feedstocks and Conditions Most Susceptible to Pile Fires

- Raw, green feedstocks that may have already begun decomposing, such as a large brush pile.
- Bark chips if given enough moisture to start biological activity.
- Large piles of coarse compost, feedstock and screened over-sized material (particle size ~4"), such as bulking material, wood chips and mulch products.

Prevention of Fires

- Allow pile heat dissipation by keeping pile height below 2 1/2-meters (8-9 feet)
- Keep pile moisture above 40%, and
- Keep moisture uniformly distributed

Sources of Heat

Spontaneous combustion

Lightning strikes

Cutting torches, welding sparks; vehicle sparks

Grinding sparks; shovel sparks; turning sparks

Cigarettes

Wildfires

Arson

Sources of Fuel

Feedstocks and product
Compost Curing piles
Woody bulking material piles
Piles of screened "Overs"
Methane

Dust

Lubricants and fuels
Refuse and debris piles
Paper-bag packaging materials
Office supplies

Pile Fires

To Extinguish Pile Fires

- Reduce pile height to one foot to allow water to get in pile, then
- Wet down to remove heat

Question: When a pile fire develops, and the Fire Department is called and arrives on the scene, who is in charge?

Answer: The law says the Fire Department is in charge of dealing with fires.

Conclusion: Facility owner/operators should insure Fire Department personnel understand how to deal with pile fires at your facility and firefighters are trained in advance. Oxygen

Fires: Site Design Implications

- Provide enough space to avoid exceeding the fire-safe height of piles.
- Provide access to piles for fire fighting equipment (full perimeter access).
- Provide access to adequate supply of water.
- Provide space to spread piles out.

End Unit XXVIII

Pile Fires

